Solvent Effects on the Catalyst Ink and Layer Microstructure for Anion Exchange Membrane Fuel Cells

ACS Appl Mater Interfaces. 2024 Jan 31;16(4):4550-4560. doi: 10.1021/acsami.3c14404. Epub 2024 Jan 17.

Abstract

Understanding the complex solvent effects on the microstructures of ink and catalyst layer (CL) is crucial for the development of high-performance anion exchange membrane fuel cells (AEMFCs). Herein, we study the solvent effects within the binary solvent ink system composed of water, isopropyl alcohol (IPA), commercial anion exchange ionomer, and Pt/C catalyst. The results show that the Pt/C particles and ionomer tend to form large aggregates wrapped with a thick ionomer layer in IPA-rich ink and promote the formation of large mesopores within the CL. With the increase of the water content in the ink, Pt/C particles are more likely to bridge to each other through wrapped FAA to form a well-connected three-dimensional network. The CL fabricated using water-rich ink shows smaller pores, higher porosity, and a more homogeneous ionomer network without the formation of large aggregates. Based on these results, we propose that the properties of the solvent mixture, including dielectric constant (ε) and solubility parameter (δ), affect the coulomb interaction of charged particles and surface tension at interfaces, which in turn affects the microstructure of ink and CL. By leveraging the solvent effects, we optimize the CL microstructures and improve the performance of AEMFC. These results may guide the rational design and fabrication of AEMFCs.

Keywords: AEMFC; CL microstructure; ink behavior; ink composition; solvent effect.