Synthesis and Application of Hybrid Aluminum Dialkylphosphinates as Highly Efficient Flame Retardants for Polyamides

Polymers (Basel). 2023 Dec 4;15(23):4612. doi: 10.3390/polym15234612.

Abstract

Hybrid aluminum dialkylphosphinates were synthesized from mixed diethyl-, ethylisobutyl-, and diisobutylphosphinates and Al3+ in water. The XRD, DSC, and TGA results of these Al phosphinates established that phosphinate ligands are randomly distributed in the species. The thermal and thermoxidative stabilities of the hybrid phosphinates were easily adjustable by varying the ratio of phosphinate ligands, a desirable feature for efficient flame retardants. The hybrid aluminum dialkylphosphinates with a relatively low ratio of diethylphosphinate demonstrated higher efficiency than Al diethylphosphinate and Al diisobutylphosphinate in flame-retarding polyamide 66. Detailed investigations on the thermal and thermoxidative stabilities of Al dialkylphosphinates and the morphologies of char obtained in UL-94 tests revealed that timely vaporization of degradation products of hybrid dialkylphosphinates at a temperature which closely matches the degradation temperature of polyamides and their ability to promote char formation of polyamides are two key factors which contribute to the excellent performance of hybrid aluminum dialkylphosphinates.

Keywords: char; flame retardant; hybrid phosphinate; polyamide; vaporization.

Grants and funding

This research received no external funding.