Hybrid Polymer-Surfactant Wormlike Micelles for Concurrent Use for Oil Recovery and Drag Reduction

Polymers (Basel). 2023 Dec 4;15(23):4615. doi: 10.3390/polym15234615.

Abstract

We report on the effect of a hydrocarbon (n-dodecane) on the rheological properties and shapes of the hybrid wormlike micelles (WLMs) of a surfactant potassium oleate with an embedded polymer poly(4-vinylpyridine). With and without hydrocarbon solutions, the hybrid micelles exhibit the same values of viscosity at shear rates typical for hydraulic fracturing (HF) tests, as solutions of polymer-free WLMs. Therefore, similar to WLMs of surfactants, they could be applied as thickeners in HF fluids without breakers. At the same time, in the presence of n-dodecane, the hybrid micelles have much higher drag-reducing efficiency compared to microemulsions formed in polymer-free systems since they form "beads-on-string" structures according to results obtained using cryo-transmission electron microscopy (cryo-TEM), dynamic-light scattering (DLS), and small-angle X-ray scattering (SAXS). Consequently, they could also act as drag-reducing agents in the pipeline transport of recovered oil. Such a unique multi-functional additive to a fracturing fluid, which permits its concurrent use in oil production and oil transportation, has not been proposed before.

Keywords: drag reduction; hybrid micelles; hydraulic fracturing; hydrocarbon; wormlike surfactant micelles.