Impact of current anthropogenic activities on Blesbokspruit wetland microbiome and functions

Sci Total Environ. 2024 Mar 10:915:170010. doi: 10.1016/j.scitotenv.2024.170010. Epub 2024 Jan 12.

Abstract

Till present, natural wetlands have been continuously subjected to intensive pollution stress in recent years, mainly because of the rapidly growing industrialization and urbanization that are associated with a myriad of anthropogenic activities and land use practices. These man-made sources of pollution change the chemical properties of the natural wetlands, which in turn alter their microbial ecological biodiversity and functions. For the first time, the impact of the current anthropogenic activities and land use practices on the Blesbokspruit wetland chemical status and their consequential effect on the microbial structure and functions were investigated. Sites of high pollution intensity were identified using geographic information systems mapping (GISMapping) and the wetland microbiome and functional profile were studied through the use of high throughput shotgun metagenomics sequencing analysis. The predominant phyla that stemmed along the Blesbokspruit wetland were found to be Proteobacteria which was more dominant in water (93 %) than in the sediments (89 %), followed by firmicutes which was more abundant in sediments (9 %) than in water (6 %), and Bacteroidetes were relatively low in abundance within both the sediments (2 %) and the overlying water (1 %). The genera Klebsiella (70.4 %-28.2 %), Citrobacter (52.0 %-30.6 %), Escherichia (51.0 %-8.4 %), and Lynsinibacillus (9.3 %-1.5 %) were observed in most water and sediment samples. Within the six polluted sites, Site 2 was found to be the most highly polluted site in the Blesbokspruit wetland with very high COD (900 mg/L), TOC (11.60 mg/L), NO3- (39.74 mg/L), NO2- (12.64 mg/L), PO43 (4.14 mg/L), Fl- (143.88 mg/L), Cl- (145.95 mg/L) concentrations recorded in the water and high levels of TOC (0.37 mg/L), TC (6.92 %), TN (1.82 %), TS (0.53 %) in sediments. The microbial community structure and functions were found to be strongly influenced by the high organic content from the intense agricultural activities and sewage spillages and heavy metals from the mining activities nearby.

Keywords: Anthropogenic activities; Blesbokspruit wetland; Metagenomics; Microbial community structure; Wetland microbiome; Wetland pollution.

MeSH terms

  • Anthropogenic Effects
  • Environmental Monitoring
  • Geologic Sediments / chemistry
  • Humans
  • Metals, Heavy* / analysis
  • Microbiota*
  • Water / analysis
  • Water Pollutants, Chemical* / analysis
  • Wetlands

Substances

  • Metals, Heavy
  • Water
  • Water Pollutants, Chemical