Yolk-shell construction of Co0.7Fe0.3 modified with dual carbon for broadband microwave absorption

J Colloid Interface Sci. 2024 Apr:659:945-958. doi: 10.1016/j.jcis.2024.01.052. Epub 2024 Jan 11.

Abstract

The rational and effective combination of multicomponent materials and the design of subtle microstructure for efficient microwave absorption are still challenging. In this study, carbon-coated CoFe with heterogeneous interfaces was space-restricted in the void space of hollow mesoporous carbon spheres through a facile approach involving electrostatic adsorption and annealing, and a high-performance microwave absorber (MAs) (denoted as Co0.7Fe0.3@C@void@C) was successfully prepared. The heterostructure, three-dimensional lightweight porous morphology, and electromagnetic synergy strategy enabled the Co0.7Fe0.3@C@void@C material with yolk-shell structure to exhibit surprising microwave absorption properties. When the annealing temperature and filler loading were 550° C and 15 wt%, respectively, the composites exhibited an effective absorption bandwidth (EAB) of 7.16 GHz at 2.48 mm and a minimum reflection loss of -24.1 dB at 2.11 mm. A maximum EAB of 7.21 GHz at 2.37 mm could be achieved for the composite prepared with an annealing temperature of 650° C. In addition, radar cross-section experiments demonstrated, the potential practical applicability of Co0.7Fe0.3@C@void@C. This work expands a new avenue to develop high-performance and lightweight MAs with ingenious microstructure.

Keywords: Cobalt-iron alloy; Heterogeneous interface; Impedance matching; Microwave absorption; Yolk-shell structure.