Design of highly selective and stable CsPbI3 perovskite catalyst for photocatalytic reduction of CO2 to C1 products

J Colloid Interface Sci. 2024 Apr:659:936-944. doi: 10.1016/j.jcis.2024.01.030. Epub 2024 Jan 11.

Abstract

Finding efficient photocatalytic carbon dioxide reduction catalysts is one of the core issues in addressing global climate change. Herein, the pristine CsPbI3 perovskite and doped CsPbI3 perovskite were evaluated in carbon dioxide reduction reaction (CO2RR) to C1 products by using density functional theory. Free energy testing and electronic structure analysis methods have shown that doped CsPbI3 exhibits more effective catalytic performance, higher selectivity, and stability than undoped CsPbI3. Additionally, it is discovered that CsPbI3 (100) and (110) crystal surfaces have varied product selectivity. The photo-catalytic effectiveness is increased by the narrower band gap of Bi and Sn doped CsPbI3, which broadens the absorption spectrum of visible light and makes electron transport easier. The calculation results indicate that Bi doped CsPbI3 (100) and CsPbI3 (110) crystal faces exhibit good selectivity towards CH4, with free energy barriers as low as 0.55 eV and 0.58 eV, respectively. Sn doped CsPbI3 (100) and CsPbI3 (110) crystal planes exhibit good selectivity for HCOOH and CH3OH, respectively. The results indicate that the Bi and Sn doped CsPbI3 perovskite catalyst can further improve the CO2 photocatalytic activity and high selectivity for C1 products, making it a suitable substrate material for high-performance CO2RR.

Keywords: CO(2) reduction; CsPbI(3) perovskite; Photocatalysis; Product selectivity.