Continuous cardiac monitoring in epilepsy: an implantable loop manual activation algorithm for improving ECG signal acquisition accuracy

BMC Cardiovasc Disord. 2024 Jan 13;24(1):42. doi: 10.1186/s12872-024-03721-5.

Abstract

Background: The muscle artifacts, caused by prominent muscle contractions, mimicking cardiac arrhythmias, might compromise the ECG signal quality and the implantable loop recorder memory capacity in patients with epilepsy. We developed an epileptic seizures clinical pattern-based implantable loop recorder manual activation algorithm, presenting its real-world efficacy here.

Methods: One hundred ninety-three patients (18-60 years) with drug-resistant focal epilepsy were consecutively enrolled and underwent a subcutaneous loop recorder implantation. Patients with focal onset-aware seizures and patients with focal impaired awareness seizures /bilateral tonic-clonic seizures without aura were recommended to use the activator once - just after the episode. Patients with focal impaired awareness seizures/bilateral tonic-clonic seizures with aura, the caregivers of patients experiencing status epilepticus, were advised to use the activator twice - during the aura and after the episode/ regaining consciousness.

Results: Six thousand four hundred ninety-four ECG traces (4826 - auto-triggered events, 1668 - person-activated events) were recorded and analyzed. The rate of true positive events in the person-activated group was statistically higher than in the autoactivation group (72.5% vs.19.4%, p < 0.0001). Person-activated false-positive events were observed in 30.5% of patients with focal impaired awareness seizures and 27.7% in patients with bilateral tonic-clonic seizures. The highest rate of false-positive events (61.5%) was detected in patients undergoing epileptic status, and the lowest rate (3.8%) - was in patients with focal onset aware seizures. The rate of false-positive events was significantly higher in patients with impaired awareness seizures without aura both in focal impaired awareness (45.5% vs. 19.3%, p < 0.0001) and bilateral tonic-clonic seizure groups (38.8% vs. 5.9%, p < 0.0001).

Conclusions: Arrhythmias with varying clinical outcomes are expected in epilepsy patients and have been monitored continuously. The specified loop recorder external activation algorithm can improve the clinically relevant cardiac arrhythmia detection accuracy in epilepsy patients and the value of future studies.

Keywords: Cardiac arrhythmias; Continuous monitoring; False-positive arrhythmias; Seizure.

MeSH terms

  • Algorithms
  • Arrhythmias, Cardiac
  • Electrocardiography
  • Epilepsy*
  • Epilepsy, Tonic-Clonic* / diagnosis
  • Humans
  • Seizures / diagnosis