[Analysis on Driving Factors, Reduction Potential, and Environmental Effect of Inorganic Fertilizer Input in Chongqing]

Huan Jing Ke Xue. 2024 Jan 8;45(1):364-375. doi: 10.13227/j.hjkx.202211280.
[Article in Chinese]

Abstract

In this study, we sought to quantify the effect of planting structure change on fertilizer input and environmental cost in Chongqing and develop scientific and rational strategies for chemical fertilizer reduction. Based on the crop fertilizer quota standard and large sample farmer survey data under the medium productivity level in Chongqing, we evaluated and analyzed the application reduction potential and environmental benefits of fertilizer with the difference method and life cycle assessment. The results showed that:① since Chongqing became a municipality directly under the central government (1997), Chongqing crop planting structure had greatly changed, and the proportion of food crop (rice, corn, wheat, bean, and potato) decreased by 21%. The area of fruits and vegetables increased from 3.36×105 hm2 to 1.05×106 hm2, and their proportion increased by 20%. ② Nearly 55% of fertilizers had been consumed by vegetable (37%) and citrus production systems, and 11%, 12%, and 12% of fertilizers were consumed by rice, corn, and potato, respectively. ③ The total fertilizer reduction of the Chongqing planting industry could reach up to 1.69×105 tons during the period of "the 14th Five-Year Plan," with a fertilizer reduction potential of 18.6%. The fertilizer reduction potential (reduction amount) of rice, corn, citrus, and vegetables would reach 0.3% (2.9×102 tons), 12% (1.45×104 tons), 21% (3.65×104 tons), and 30% (1.18×105 tons), respectively. On the other hand, the rape system was insufficient in phosphorus potassium fertilizers, and the corn tended to be insufficient in potash fertilizer. ④ The current production level was low, and the nitrogen loss, greenhouse gas emissions, and eutrophication potential in the planting industry of Chongqing reached 1.81×105 tons (N), 1.43×107 tons (CO2-eq), and 1.74×105 tons (PO4-eq). With the increase in the realization degree of the crop quota standard (60%-100%), the reactive nitrogen loss, greenhouse gas emissions, and eutrophication potential decreased by 14.9%-24.9%, 10.1%-16.7%, and 13.8%-23%, respectively. The structure of the planting industry in Chongqing significantly changed, the total fertilizer consumption in Chongqing tended to decline gradually, and the fertilization intensity of commercial crops stayed at a high level. The agricultural fertilizer reduction potential and the reactive nitrogen and greenhouse gas emission reduction potential were large, especially for citrus and vegetable production systems. However, it is also necessary to pay attention to insufficient corn potash fertilizer and rape phosphorus potassium fertilizer investment and carry out collaborative promotion of fertilizer reduction.

Keywords: cropping structure; eutrophication potential; fertilizer reduction potential; greenhouse gas (GHG) emission; reactive N loss.

Publication types

  • English Abstract

MeSH terms

  • Agriculture / methods
  • China
  • Fertilizers / analysis
  • Greenhouse Gases* / analysis
  • Nitrogen / analysis
  • Nitrous Oxide / analysis
  • Oryza*
  • Phosphorus / analysis
  • Potassium
  • Soil / chemistry
  • Vegetables

Substances

  • Fertilizers
  • Greenhouse Gases
  • Nitrogen
  • Phosphorus
  • Potassium
  • Soil
  • Nitrous Oxide