Synthesis of Tridecacene by Multistep Single-Molecule Manipulation

J Am Chem Soc. 2024 Feb 14;146(6):3700-3709. doi: 10.1021/jacs.3c09392. Epub 2024 Jan 12.

Abstract

Acenes represent a unique class of polycyclic aromatic hydrocarbons that have fascinated chemists and physicists due to their exceptional potential for use in organic electronics. While recent advances in on-surface synthesis have resulted in higher acenes up to dodecacene, a comprehensive understanding of their fundamental properties necessitates their expansion toward even longer homologues. Here, we demonstrate the on-surface synthesis of tridecacene via atom-manipulation-induced conformational preparation and dissociation of a trietheno-bridged precursor on a Au(111) surface. The generated tridecacene has been investigated by scanning tunneling microscopy and spectroscopy (STM/STS), combined with first-principles calculations. We observe that the STS transport gap (1.09 eV) shrinks again following the gap reopening of dodecacene (1.4 eV). Spin-polarized density functional theory calculations confirm an antiferromagnetic open-shell ground-state electronic configuration for tridecacene in the gas phase. Interestingly, tridecacene's open-shell character is significantly reduced upon interaction with the Au(111) surface despite being only physisorbed. The interaction with the surface leads to a lowering of the magnetization of tridecacene, a reduced gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), compared to the gas phase, and a reduced relative energy to the nonmagnetic state, making it nearly isoenergetic. These observations show qualitatively that the influence of the Au(111) substrate on the properties of long acenes is significant, which is important for interpreting the measured STS transport gaps. Our work contributes to a fundamental understanding of the electronic properties of long acenes, confirming a nonmonotonous length-dependent HOMO-LUMO gap, and to the development of multistep tip-assisted synthesis of elusive compounds.