Unlocking the phytoremediation potential of organic acids: A study on alleviating lead toxicity in canola (Brassica napus L.)

Sci Total Environ. 2024 Mar 1:914:169980. doi: 10.1016/j.scitotenv.2024.169980. Epub 2024 Jan 11.

Abstract

Soil contamination with toxic heavy metals [such as lead (Pb)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as maleic acid (MA) and tartaric acid (TA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a hydroponic experiment to assess the impact of MA (0.25 mM) and TA (1 mM) on enhancing the phytoremediation of Pb under its toxic concentration of 100 μM, using the oil seed crop canola (Brassica napus L.). Results from the present study showed that the Pb toxicity significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes and nutritional contents from the roots and shoots of the plants. In contrast, toxic concentration of Pb significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, increased enzymatic and non-enzymatic antixoidants and their specific gene expression and also increased organic acid exudation patter in the roots of B. napus. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double membranous organelles while Fourier-transform infrared (FTIR) spectroscopy showed an nveiled distinct peak variations in Pb-treated plants, when compared to control. Additionally, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double-membrane organelles, while Fourier-transform infrared (FTIR) spectroscopy unveiled distinct peak variations in Pb-treated plants compared to the control. The negative impact of Pb toxicity can overcome the application of MA and TA, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in B. napus. With the application of MA and TA, the values of the bioaccumulation factor (BAF) and translocation factor (TF) exceeded 1, indicating that the use of MA and TA enhances the phytoremediation potential of B. napus under Pb stress conditions. This finding could be beneficial for field environment studies, especially when explored through in-depth genetic and molecular analysis.

Keywords: Heavy metal contamination; Hydroponic medium; Oil seed crop; Organic acids; Oxidative stress; Phytoremediation.

MeSH terms

  • Biodegradation, Environmental
  • Brassica napus* / metabolism
  • Chelating Agents / metabolism
  • Lead / analysis
  • Plant Roots / metabolism
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Lead
  • Soil Pollutants
  • Chelating Agents
  • Soil