Knowledge domain and emerging trends of autophagy in cardiovascular research: A bibliometric analysis

Medicine (Baltimore). 2024 Jan 12;103(2):e36811. doi: 10.1097/MD.0000000000036811.

Abstract

Background: Autophagy is essential for the homeostasis and function of the cardiovascular system. Citespace is a visual analysis software developed in the context of scientometrics and data visualization. The purpose of this study is to use Citespace software to conduct bibliometric and visual analysis of the research on autophagy in cardiovascular diseases, identify the current status, hot spots and trends in this field, help researchers clarify the future research focus and direction of autophagy in cardiovascular diseases, and provide more positive and broader ideas for the treatment and drug development of cardiovascular diseases.

Methods: In the Web of Science Core Collection database to download the data from 2004 to 2022 regarding autophagy in cardiovascular research. CitespaceV was used to collect the research status, hotspots and development trends for visual analysis.

Results: The 3568 articles were published by 547 authors from 397 institutions in 75 countries. From 2004 to 2021, the annual publications increased over time. The top 3 productive nations were China, the United States, and Germany. The leading institution was China's Fudan University. The most cited paper is Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). The research hotpots include monitoring methods for autophagy activity, changes in autophagy levels in different types of cardiovascular diseases, autophagy signal transduction mechanism in cardiovascular diseases, etc.

Conclusion: Bibliometric analysis provided valuable information for autophagy research in cardiovascular disease, which is full of opportunities and challenges. The research of autophagy in the field of cardiovascular diseases is still worthy of in-depth exploration. A challenge with autophagy-targeted therapies is their dichotomy in which the goal is to target maladaptive autophagy while maintaining a baseline level of cell survival to optimize a beneficial outcome. It is necessary for scientists to develop new methods to evaluate the level of autophagy from basic application to human body and reveal the signaling mechanism of autophagy in different types of cardiovascular diseases.

MeSH terms

  • Autophagy
  • Bibliometrics
  • Biological Assay
  • Cardiovascular Diseases*
  • Cardiovascular System*
  • Humans