A review of recent developments and applications of high-permittivity dielectric shimming in magnetic resonance

NMR Biomed. 2024 Apr;37(4):e5094. doi: 10.1002/nbm.5094. Epub 2024 Jan 12.

Abstract

We present a review outlining the basic mechanism, background, recent technical developments, and clinical applications of aqueous dielectric padding in the field of MRI. Originally meant to be a temporary solution, it has gained traction as an effective method for correcting B1 + inhomogeneities due to the unique properties of the calcium titanate and barium titanate perovskites used. Aqueous dielectric pads have used a variety of high-permittivity materials over the years to improve the quality of MRI acquisitions at 1.5 and 3 T and more recently for 7 T neuroimaging applications. The technical development and assessment of these pads have been advanced by an increased use of mathematical modeling and electromagnetic simulations. These tools have allowed for a more complete understanding of the physical interactions between dielectric pads and the RF coil, making testing and safety assessments more accurate. The ease of use and effectiveness that dielectric pads offer have allowed them to become more commonplace in tackling imaging challenges in more clinically focused environments. More recently, they have seen usage not only in anatomical imaging methods but also in specialized metabolic imaging sequences such as GluCEST and NOEMTR . New colossally high-permittivity materials have been proposed; however, practical utilization has been a continued challenge due to unfavorable frequency dependences as well as safety limitations. A new class of metasurfaces has been under development to address the shortcomings of conventional dielectric padding while also providing increased performance in enhancing MRI images.

Keywords: dielectric pads; dielectric shimming; high-permittivity materials; metamaterials; metasurfaces.

Publication types

  • Review

MeSH terms

  • Magnetic Resonance Imaging* / methods
  • Magnetic Resonance Spectroscopy
  • Neuroimaging* / methods
  • Phantoms, Imaging
  • Radio Waves
  • Water

Substances

  • Water