A rapid isothermal CRISPR-Cas13a diagnostic test for genital herpes simplex virus infection

iScience. 2023 Nov 27;27(1):108581. doi: 10.1016/j.isci.2023.108581. eCollection 2024 Jan 19.

Abstract

Prompt diagnosis is essential for managing herpes simplex virus types 1 and 2 (HSV-1/2). Existing diagnostic methods are not widely available that required expensive or additional equipment for conducting examinations and result readouts, which can limit their utility in resource-constrained settings. We successfully developed a CRISPR-Cas13a-based assay for the detection and genotyping of HSV. Our assay demonstrated a high sensitivity of 96.15% and 95.15% for HSV-1 and HSV-2, respectively, with a specificity of 100% compared to a commercial qPCR assay when tested on 194 clinical samples. Remarkably, the assay enables a limit of detection of 1 copy/μL of viral DNA, facilitated by an enhanced input of RPA product and is designed for both mobile app integration and colorimetric interpretation, allowing for semiquantitative readings. These findings highlight the excellent performance of our CRISPR-based diagnostic in detecting HSV and its potential for point-of-care testing in resource-constrained settings.

Keywords: Diagnostics; Genetic engineering; Public health.