The Impact of NaOH on the Micro-Mechanical Properties of the Interface Transition Zone in Low-Carbon Concrete

Materials (Basel). 2024 Jan 3;17(1):258. doi: 10.3390/ma17010258.

Abstract

To tackle carbon emissions from cement production and address the decline in concrete's mechanical properties due to the substitution of cement with solid waste (glass powder) and natural mineral admixture (zeolite powder) materials, we employed glass powder and zeolite powder to create composite cementitious materials. These materials underwent alkali activation treatment with a 4% NaOH dosage, replacing 50% of cement to produce low-carbon concrete. Nanoindentation tests and mercury intrusion porosimetry (MIP) were employed to uncover the micro-mechanical properties and influencing mechanisms of alkali-activated low-carbon concrete. The results indicate a notable enhancement in the indentation modulus (19.9%) and hardness (25.9%) of alkali-activated low-carbon concrete compared to non-activated concrete. Simultaneously, the interfacial transition zone thickness decreased by 10 µm. The addition of NaOH led to a reduced volume fraction of pores (diameter >100 nm) and an increased fraction of pores (diameter < 100 nm), thereby reducing porosity by 2.6%, optimizing the pore structure of low-carbon concrete. The indentation modulus, hardness and volume fraction of the hydrated phase derived from Gaussian fitting analysis of the nanoindentation statistics showed that NaOH significantly improved the modulus and hardness of the hydration products of low-carbon concrete. This activation resulted in decreased LDC-S-H gel (low-density hydrated calcium silicate Ca5Si6O16(OH)·4H2O) and pore content, while the HD C-S-H gel (high-density hydrated calcium silicate Ca5Si6O16(OH)·4H2O) and CH (calcium hydroxide crystals Ca(OH)2) content increased by 13.91% and 23.46%, respectively. Consequently, NaOH influenced the micro-mechanical properties of low-carbon concrete by generating more high-density hydration products, reducing pore content, enhancing the pore indentation modulus and hardness, and shortening the interfacial transition zone. This study offers novel insights into reducing carbon emissions and promoting the use of solid waste (glass powder) and natural mineral admixture (zeolite powder) materials in concrete, contributing to the advancement of sustainable construction practices.

Keywords: alkali activation; glass powder; interfacial transition zone; low-carbon; micro-mechanical property; zeolite powder.