Improved Soil Amendment by Integrating Metal Complexes and Biodegradable Complexing Agents in Superabsorbents

Materials (Basel). 2023 Dec 27;17(1):141. doi: 10.3390/ma17010141.

Abstract

The superabsorbents' application as materials for the preparation of modern mineral fertilizers of controlled activity is presented. Under the static conditions, the commercial acrylic-based Agro® Hydrogel was used as a sorbent for Cu(II), Fe(III), Mn(II), and Zn(II) ions in the presence of three biodegradable complexing agents of the new generation: (N-1,2-dicarboxyethyl)-D,L-aspartate acid (IDHA), N,N-ethylenediaminedisuccinic acid (EDDS) and N,N-bis(carboxymethyl) glutamic acid (GLDA). The ions and complexes concentrations were determined by the inductively coupled plasma optical emission spectrometer (ICP-OES). The characterization of hydrogel before and after the adsorption process was made using the Fourier transform infrared spectroscopy (FT-IR), surface area determination (ASAP), scanning electron microscopy (SEM-EDS) as well as the thermogravimetric (TGA) methods. The influence of the phase contact time, initial concentration, and pH on the adsorption capacities was investigated. The kinetic and adsorption parameters were determined. The Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin adsorption models were applied to describe the experimental data. The Langmuir isotherm model accurately characterized the equilibrium process. The adsorption process was fast, and it reached equilibrium after 60 min of the phase contact time. The research on the adsorption of Cu(II), Fe(III), Mn(II), and Zn(II) onto Agro® Hydrogel with IDHA, EDDS, and GLDA indicates that these complexing agents improve process efficiency.

Keywords: EDDS; GLDA: fertilizers; IDHA; complexing agents; sorption assessment.

Grants and funding

This research received no external funding.