High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface

Sensors (Basel). 2023 Dec 30;24(1):228. doi: 10.3390/s24010228.

Abstract

Orbital angular momentum (OAM) multiplexing of electromagnetic (EM) waves is of great significance for high-speed wireless communication and remote sensing. To achieve high-efficiency OAM multiplexing for multi-channel incident EM waves, this paper presents a novel angle-dispersive meta-atom structure, which can introduce the required anti-symmetric phase dispersion as well as high transmission efficiency for OAM multiplexing. These meta-atoms are then arranged delicately to form an angle-dispersive metasurface working at the X band, which enables three-channel OAM multiplexing by converting highly directional transverse-magnetic (TM) waves incident from 0 and ±45° to coaxial OAM beams with l = 0 and ±2 modes, respectively. The simulation and experimental results reveal that the proposed metasurface can convert a higher proportion of energy to the required OAM modes compared to the conventional OAM multiplexing metasurfaces, which can significantly improve the coaxial transmission efficiency of multi-channel OAM multiplexing.

Keywords: angular dispersion; metasurface; multi-channel; multiplexing; orbital angular momentum.