Gadolinium Effects on Liposome Fluidity and Size Depend on the Headgroup and Side Chain Structure of Key Mammalian Brain Lipids

Molecules. 2023 Dec 25;29(1):135. doi: 10.3390/molecules29010135.

Abstract

The lanthanide metal gadolinium has been used in the healthcare industry as a paramagnetic contrast agent for years. Gadolinium deposition in brain tissue and kidneys has been reported following gadolinium-based contrast agent administration to patients undergoing MRI. This study demonstrates the detrimental effects of gadolinium exposure at the level of the cell membrane. Biophysical analysis using fluorescence spectroscopy and dynamic light scattering illustrates differential interactions of gadolinium ions with key classes of brain membrane lipids, including phosphatidylcholines and sphingomyelins, as well as brain polar extracts and biomimetic brain model membranes. Electrostatic attraction to negatively charged lipids like phosphatidylserine facilitates metal complexation but zwitterionic phosphatidylcholine and sphingomyelin interaction was also significant, leading to membrane rigidification and increases in liposome size. Effects were stronger for fully saturated over monounsaturated acyl chains. The metal targets key lipid classes of brain membranes and these biophysical changes could be very detrimental in biological membranes, suggesting that the potential negative impact of gadolinium contrast agents will require more scientific attention.

Keywords: brain lipids; gadolinium; liposome size; membrane fluidity; metal-lipid interactions; toxicity.

MeSH terms

  • Animals
  • Brain / diagnostic imaging
  • Contrast Media
  • Gadolinium*
  • Humans
  • Liposomes*
  • Mammals
  • Membrane Lipids

Substances

  • Gadolinium
  • Liposomes
  • Contrast Media
  • Membrane Lipids

Grants and funding

This research was funded by the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant to E.J.P. (RGPIN/03911-2018).