Effects of Planting Density and Nitrogen Fertilization on the Growth of Forage Rice in Reclaimed and General Paddy Fields

Plants (Basel). 2023 Dec 19;13(1):13. doi: 10.3390/plants13010013.

Abstract

The purpose of this study is to identify the different effects exerted by planting density and nitrogen fertilization on high-salinity reclaimed paddy fields (RPF) and general paddy fields (GPFs), and to find the amount of fertilization and the planting density suitable for the growth of forage rice in each paddy field. Nitrogen fertilization with high-salt and low-salt soils, an untreated control plot, treatment with 200 kg/ha, 300 kg/ha, and 400 kg/ha, and planting densities of 30 cm × 10 cm and 30 cm × 16 cm, growth, and feed values were investigated. In both experimental locations, there was no significant change in the soil due to N treatment, but in the case of RPF, electrical conductivity (EC) decreased significantly from more than 5 dS/m to up to 2.87 dS/m during the yellow ripe stage due to the influence of floods and concentrated precipitation in the fields. In all soils, as both the amount of N treatment and the planting density increased, there was a proportional relationship in which the number of tillers and the dry weight also increased, with the occurrence of lodging also being increased. The dry weight, as expected, was 1.5 times higher at a planting distance of 10 cm, rather than 16 cm. In addition, in both locations, the N treatment led to an increase in the dry weight, but when N treatment reached 400 kg/ha (2.0), the dry weight decreased instead. Moreover, although there was no clear difference in feed value according to N treatment, in RPF, the neutral detergent fiber (NDF) was higher than 60%, the relative feed value (RFV) was less than 98, and the total digestible nutrient (TDN) was also low, confirming that the quality of rice was higher in GPF.

Keywords: feed values; forage rice; nitrogen fertilization; planting density; salinity; soil condition.

Grants and funding

This research was conducted with the support of the research fund (project number: 2023-0602-01) of the Chungnam National University in Korea.