Selected Physicochemical, Thermal, and Rheological Properties of Barley Starch Depending on the Type of Soil and Fertilization with Ash from Biomass Combustion

Foods. 2023 Dec 21;13(1):49. doi: 10.3390/foods13010049.

Abstract

The following study analyzed the impact of fertilizing barley with fly ash from biomass combustion grown on two types of soil, Haplic Luvisol (HL) and Gleyic Chernozem (GC), on the properties of starch. The experiment was conducted in 2019 (A) and 2020 (B), and barley was fertilized with ash doses (D1-D6) differing in mineral content. In the tested barley starch samples, the amylose content, the clarity of the paste, and the content of selected minerals were determined. The thermodynamic characteristics of gelatinization and retrogradation were determined using the DSC method. Pasting characteristics, flow curves, and viscoelastic properties of starch pastes were performed. Starches differed in amylose content and paste clarity. The highest gelatinization and retrogradation enthalpy (ΔHG and ΔHR) values were recorded for samples GCD1A and HLD5B. None of the tested factors significantly affected the pasting temperature (PT), but they had a significant impact on the remaining parameters of the pasting characteristics. The average PT value of barley starches was 90.9 °C. However, GCD2A starch had the highest maximum viscosity and the highest rheological stability during heating. GCD2A paste was characterized by the highest apparent viscosity. It was shown that all pastes showed non-Newtonian flow and shear-thinning and had a predominance of elastic features over viscous ones. The resulting gels had the characteristics of weak gels. Ash from burning wood biomass is an innovative alternative to mineral fertilizers. It was shown that the use of such soil fertilization influenced the properties of barley starch.

Keywords: ash from biomass combustion; barley starch; fertilization; rheological properties; soil; thermal properties; viscosity.