Kinematic adaptations from self-selected to fast speed walking in patients with adult spinal deformity

Spine Deform. 2024 Mar;12(2):423-431. doi: 10.1007/s43390-023-00799-3. Epub 2024 Jan 10.

Abstract

Purpose: To investigate kinematic adaptations from self-selected to fast speed walking in ASD patients.

Methods: 115 primary ASD and 66 controls underwent biplanar radiographic X-rays and 3D gait analysis to calculate trunk, segmental spine and lower limb kinematics during self-selected and fast speed walking. Kinematic adaptation was calculated as the difference (Δ) between fast and self-selected speed walking. ASD with 7 or more limited kinematic adaptation parameters were classified as ASD-limited-KA, while those with less than 7 limited kinematic adaptation parameters were classified as ASD-mild-KA.

Results: 25 patients were classified as ASD-limited-KA and 90 as ASD-mild-KA. ASD-limited-KA patients walked with a lesser increase of pelvic rotation (Δ = 1.7 vs 5.5°), sagittal hip movement (Δ = 3.1 vs 7.4°) and shoulder-pelvis axial rotation (Δ = 3.4 vs 6.4°) compared to controls (all p < 0.05). ASD-limited-KA had an increased SVA (60.6 vs - 5.7 mm), PT (23.7 vs 11.9°), PI-LL (9.7 vs - 11.7°), knee flexion (9.2 vs - 0.4°) and a decreased LL (44.0 vs 61.4°) compared to controls (all p < 0.05). Kinematic and radiographic alterations were less pronounced in ASD-mild-KA. The limited increase of walking speed was correlated to the deteriorated physical component summary score of SF-36 (r = 0.37).

Discussion: Kinematic limitations during adaptation from self-selected to fast speed walking highlight an alteration of a daily life activity in ASD patients. ASD with limited kinematic adaptations showed more severe sagittal malalignment with an increased SVA, PT, PI-LL, and knee flexion, a decreased LL and the most deteriorated quality of life. This highlights the importance of 3D movement analysis in the evaluation of ASD.

Keywords: 3D gait analysis; Adult spinal deformity; Kinematic adaptations; Quality of life; Sagittal malalignment.

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Humans
  • Lower Extremity
  • Quality of Life*
  • Spine* / diagnostic imaging
  • Walking