Altered sleep behavior strengthens face validity in the ArcAβ mouse model for Alzheimer's disease

Sci Rep. 2024 Jan 10;14(1):951. doi: 10.1038/s41598-024-51560-3.

Abstract

Demographic changes will expand the number of senior citizens suffering from Alzheimer's disease (AD). Key aspects of AD pathology are sleep impairments, associated with onset and progression of AD. AD mouse models may provide insights into mechanisms of AD-related sleep impairments. Such models may also help to establish new biomarkers predicting AD onset and monitoring AD progression. The present study aimed to establish sleep-related face validity of a widely used mouse model of AD (ArcAβ model) by comprehensively characterizing its baseline sleep/wake behavior. Chronic EEG recordings were performed continuously on four consecutive days in freely behaving mice. Spectral and temporal sleep/wake parameters were assessed and analyzed. EEG recordings showed decreased non-rapid eye movement sleep (NREMS) and increased wakefulness in transgenic mice (TG). Vigilance state transitions were different in TG mice when compared to wildtype littermates (WT). During NREMS, TG mice had lower power between 1 and 5 Hz and increased power between 5 and 30 Hz. Sleep spindle amplitudes in TG mice were lower. Our study strongly provides sleep-linked face validity for the ArcAβ model. These findings extend the potential of the mouse model to investigate mechanisms of AD-related sleep impairments and the impact of sleep impairments on the development of AD.

MeSH terms

  • Alzheimer Disease* / genetics
  • Animals
  • Behavioral Symptoms
  • Disease Models, Animal
  • Mice
  • Mice, Transgenic
  • Sleep
  • Sleep, Slow-Wave*