Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR)

Sci Total Environ. 2024 Mar 15:916:169873. doi: 10.1016/j.scitotenv.2024.169873. Epub 2024 Jan 8.

Abstract

The fragile Loess Plateau of China suffers substantial gully erosion. It is imperative to elucidate gully erosion patterns for implementing effective erosion control strategies. However, high spatiotemporal resolution quantification of gully dynamics remains limited across the Loess Plateau landscape. We utilized the small baseline subset interferometric synthetic aperture radar (SBAS InSAR) technique to investigate the phenomenon of gully erosion and deposition on the Dongzhiyuan tableland, which sits within the vast expanse of the Loess Plateau in China, over the period spanning 2020-2022. The tableland edges subsided while gully bottoms uplifted due to sedimentation. Low elevations underwent active deformation. Slope, aspect, and curvature modulated uplift and subsidence patterns by affecting runoff and sediment transport. Gentle downstream slopes displayed enhanced sedimentation. Southern gullies showed pronounced uplift compared to northern gullies. Heavy rainfall triggered extensive erosion followed by rapid uplift, reflecting an adaptive oscillation between erosion and deposition. Basin hydrology correlated with spatial patterns of deformation. Vegetation cover above 60 % of the maximum substantially increased InSAR error. Our study reveals intricate spatiotemporal behaviors of erosion and deposition in loess gullies using time-series InSAR. The findings provide new insights into gully geomorphology and evolution, and our study quantifies gully erosion and deposition patterns at high spatiotemporal resolution, enabling identification of the most vulnerable areas and prioritization of conservation efforts.

Keywords: Gully erosion; InSAR; Loess Plateau; Surface deformation; Topographic evolution.