Phenylalanine requirements using the direct amino acid oxidation technique, and the effects of dietary phenylalanine on food intake, gastric emptying, and macronutrient metabolism in adult cats

J Anim Sci. 2024 Jan 3:102:skae009. doi: 10.1093/jas/skae009.

Abstract

Despite Phe being an indispensable amino acid for cats, the minimum Phe requirement for adult cats has not been empirically defined. The objective of study 1 was to determine the minimum Phe requirement, where Tyr is in excess, in adult cats using the direct amino acid oxidation (DAAO) technique. Four adult male cats were used in an 8 × 4 Latin rectangle design. Cats were adapted to a basal diet for 7 d, top dressed with Phe to meet 140% of the adequate intake (NRC, 2006. Nutrient requirements of dogs and cats. Washington, DC: Natl. Acad. Press). Cats were randomly assigned to one of eight experimental Phe diets (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). Following 1 d of diet adaptation, individual DAAO studies were performed. During each DAAO study, cats were placed into individual indirect calorimetry chambers, and 75% of the cat's daily meal was divided into 13 equal meals supplied with a dose of L-[1-13C]-Phe. Oxidation of L-[1-13C]-Phe (F13CO2) during isotopic steady state was determined from the enrichment of 13CO2 in breath. Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Phe on 13CO2. The mean population minimum requirement for Phe was estimated at 0.32% DM and the upper 95% population confidence limit at 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. In study 2, the effects of a bolus dose of Phe (44 mg kg-1 BW) on food intake, gastric emptying (GE), and macronutrient metabolism were assessed in a crossover design with 12 male cats. For food intake, cats were given Phe 15 min before 120% of their daily food was offered and food intake was measured. Treatment, day, and their interaction were evaluated using PROC GLIMMIX in SAS. Treatment did not affect any food intake parameters (P > 0.05). For GE and macronutrient metabolism, cats were placed into individual indirect calorimetry chambers, received the same bolus dose of Phe, and 15 min later received 13C-octanoic acid (5 mg kg-1 BW) on 50% of their daily food intake. Breath samples were collected to measure 13CO2. The effect of treatment was evaluated using PROC GLIMMIX in SAS. Treatment did not affect total GE (P > 0.05), but cats receiving Phe tended to delay time to peak enrichment (0.05 < P ≤ 0.10). Overall, Phe at a bolus dose of 44 mg kg-1 BW had no effect on food intake, GE, or macronutrient metabolism. Together, these results suggest that the bolus dose of Phe used may not be sufficient to elicit a GE response, but a study with a greater number of cats and greater food intake is warranted.

Keywords: amino acid requirement; aromatic amino acids; carnivore; feline; satiety; stable isotopes.

Plain language summary

Two studies were conducted to evaluate 1) the minimum requirement for dietary Phe and 2) the effects of Phe on gastric emptying (GE) and food intake in adult cats. In study 1, the minimum Phe requirement was estimated using the direct amino acid oxidation (DAAO) technique. Four cats were used and received all diets in random order in a Latin rectangle design (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). The minimum Phe requirement, in the presence of excess of Tyr, for adult cats was estimated to be 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors; higher than current recommendations set in place by the National Research Council and the American Association of Feed Control Officials. In study 2, we first validated the use of the 13C-octanoic acid breath test (13C-OABT) in cats. Then, the effects of an oral bolus of Phe on food intake, GE, and macronutrient metabolism were evaluated. Phe supplementation did not influence food intake, macronutrient metabolism, or total GE, but tended to delay the time to peak GE.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Cat Diseases*
  • Cats
  • Diet / veterinary
  • Dog Diseases*
  • Dogs
  • Eating
  • Gastric Emptying
  • Male
  • Nutrients
  • Phenylalanine / metabolism
  • Phenylalanine / pharmacology

Substances

  • Amino Acids
  • Phenylalanine