A kV-MV approach to CBCT metal artifact reduction using multi-layer MV-CBCT

Phys Med Biol. 2024 Mar 14;69(7):10.1088/1361-6560/ad1cfb. doi: 10.1088/1361-6560/ad1cfb.

Abstract

Objective. To demonstrate that complete cone beam CT (CBCT) scans from both MV-energy and kV-energy LINAC sources can reduce metal artifacts in radiotherapy guidance, while maintaining standard-of-care x-ray doses levels.Approach. MV-CBCT and kV-CBCT scans are acquired at half normal dose. The impact of lowered dose on MV-CBCT data quality is mitigated by the use of a 4-layer MV-imager prototype and reduced LINAC energy settings (2.5 MV) to improve photon capture. Additionally, the MV-CBCT is used to determine the 3D position and pose of metal implants, which in turn is used to guide model-based poly-energetic correction and interleaving of the kV-CBCT and MV-CBCT data. Certain edge-preserving regularization steps incorporated into the model-based correction algorithm further reduce MV data noise.Main results. The method was tested in digital phantoms and a real pelvis phantom with large 2.5″ spherical inserts, emulating hip replacements of different materials. The proposed method demonstrated an appealing compromise between the high contrast of kV-CBCT and low artifact content of MV-CBCT. Contrast-to-noise improved 3-fold compared to MV-CBCT with a clinical 1-layer architecture at matched dose (37 mGy) and edge blur levels. Visual delineation of the bladder and prostate improved noteably over kV- or MV-CBCT alone.Significance. The proposed method demonstrates that a full MV-CBCT scan can be combined with kV-CBCT to reduce metal artifacts without resorting to complicated beam collimation strategies to limit the MV-CBCT dose contribution. Additionally, significant improvements in CNR can be achieved as compared to metal artifact reduction through current clinical MV-CBCT practices.

Keywords: cone beam CT; image guidance; metal artifacts; multi-layer detector; radiation therapy; radiotherapy.

MeSH terms

  • Algorithms
  • Artifacts*
  • Cone-Beam Computed Tomography
  • Humans
  • Male
  • Pelvis
  • Phantoms, Imaging
  • Spiral Cone-Beam Computed Tomography*