High-resolution map of the Fc functions mediated by COVID-19-neutralizing antibodies

Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2314730121. doi: 10.1073/pnas.2314730121. Epub 2024 Jan 10.

Abstract

A growing body of evidence shows that fragment crystallizable (Fc)-dependent antibody effector functions play an important role in protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To unravel the mechanisms that drive these responses, we analyzed the phagocytosis and complement deposition mediated by a panel of 482 human monoclonal antibodies (nAbs) neutralizing the original Wuhan virus, expressed as recombinant IgG1. Our study confirmed that nAbs no longer neutralizing SARS-CoV-2 Omicron variants can retain their Fc functions. Surprisingly, we found that nAbs with the most potent Fc function recognize the N-terminal domain, followed by those targeting class 3 epitopes in the receptor binding domain. Interestingly, nAbs direct against the class 1/2 epitopes in the receptor binding motif, which are the most potent in neutralizing the virus, were the weakest in Fc functions. The divergent properties of the neutralizing and Fc function-mediating antibodies were confirmed by the use of different B cell germlines and by the observation that Fc functions of polyclonal sera differ from the profile observed with nAbs, suggesting that non-neutralizing antibodies also contribute to Fc functions. These data provide a high-resolution picture of the Fc-antibody response to SARS-CoV-2 and suggest that the Fc contribution should be considered for the design of improved vaccines, the selection of therapeutic antibodies, and the evaluation of correlates of protection.

Keywords: B cell germlines; Fc function; SARS-CoV-2; antibodies.

MeSH terms

  • Antibodies, Neutralizing*
  • COVID-19*
  • Epitopes
  • Humans
  • SARS-CoV-2

Substances

  • Antibodies, Neutralizing
  • Epitopes

Supplementary concepts

  • SARS-CoV-2 variants