Photoinduced Transition from Quasi-Two-Dimensional Ruddlesden-Popper to Three-Dimensional Halide Perovskites for the Optical Writing of Multicolor and Light-Erasable Images

J Phys Chem Lett. 2024 Jan 18;15(2):540-548. doi: 10.1021/acs.jpclett.3c03151. Epub 2024 Jan 10.

Abstract

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.