Highly-Efficient Gallium-Interference Tumor Therapy Mediated by Gallium-Enriched Prussian Blue Nanomedicine

ACS Nano. 2024 Jan 10. doi: 10.1021/acsnano.3c10994. Online ahead of print.

Abstract

Prussian blue (PB)-based nanomedicines constructed from metal ion coordination remain restricted due to their limited therapeutic properties, and their manifold evaluation complexity still needs to be unraveled. Owing to the high similarities of its ionic form to iron (Fe) and the resulting cellular homeostasis disruption performance, physiologically unstable and low-toxicity gallium (Ga) has garnered considerable attention clinically as an anti-carcinogen. Herein, Ga-based nanoparticles (NPs) with diverse Ga contents are fabricated in one step using PB with abundant Fe sites as a substrate for Ga substitution, which aims to overcome the deficiencies of both and develop an effective nanomedicine. A systematic comparison of their physicochemical properties effectively reveals the saturated Ga introduction state during the synthesis process, further identifying the most Ga-enriched PB NPs with a substitution content of >50% as a nanomedicine for subsequent exploration. It is verified that the Ga interference mechanisms mediated by the most Ga-enriched PB NPs are implicated in metabolic disorders, ionic homeostasis disruption, cellular structure dysfunction, apoptosis, autophagy, and target activation of the mammalian target of the rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways. This study provides significant guidance on exploiting clinically approved agents for Ga interference and lays the foundation for the next generation of PB-based theranostic agents.

Keywords: Prussian blue; gallium interference; gallium substitution; nanomedicine; tumor therapy.