Identification of acetylshikonin as a novel tubulin polymerization inhibitor with antitumor activity in human hepatocellular carcinoma cells

J Gastrointest Oncol. 2023 Dec 31;14(6):2574-2586. doi: 10.21037/jgo-23-842. Epub 2023 Dec 22.

Abstract

Background: Microtubules are attractive targets for anticancer drugs. However, the microtubule-targeting agents (MTAs) currently in clinical use exhibit inevitable drug resistance. Therefore, there is an urgent need to discover novel MTAs for the clinical treatment of cancer.

Methods: Bioactive compounds extracted from Lithospermum erythrorhizon were assessed for in vitro anti-proliferative activities against a panel of human cancer cell lines using cell counting kit-8 (CCK-8) assay. Tubulin polymerization inhibition assay, colchicine competitive binding site assay, and immunofluorescence were used to validate the tubulin inhibition effect of acetylshikonin. Flow cytometry, Hoechst staining, and caspase-3 activity evaluation were performed to assess cell cycle arrest and cell apoptosis. 5,5',6,6'-tetrachloro-1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide (JC-1) staining and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining were used to evaluate mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), respectively.

Results: Acetylshikonin exhibited potent anti-proliferative activities against a panel of human cancer cell lines (IC50 values: 1.09-7.26 µM) and displayed comparable cytotoxicity against several drug-resistant cell lines. Further mechanism studies revealed that acetylshikonin induced cell cycle arrest of MHCC-97H cells at G2/M phase, and significantly promoted apoptosis marked by a collapse of MMP and abnormal ROS accumulation.

Conclusions: In this study, acetylshikonin was identified as MTA against hepatocellular carcinoma and can serve as a promising lead compound for further development of anti-cancer drug, underscoring its potential clinical significance.

Keywords: Natural products (NPs); acetylshikonin; anti-cancer; microtubule-targeting agent (MTA).