Identification of triangular single crystals of transition metal dichalcogenides based on the detection algorithm

Opt Lett. 2024 Jan 15;49(2):298-301. doi: 10.1364/OL.510325.

Abstract

The distinctive properties and facile integration of 2D materials hold the potential to offer promising avenues for the on-chip photonic devices, and the expeditious and nondestructive identification and localization of diverse fundamental building blocks become key prerequisites. Here, we present a methodology grounded in digital image processing and deep learning, which effectively achieves the detection and precise localization of four monolayer-thick triangular single crystals of transition metal dichalcogenides with the mean average precision above 90%, and the approach demonstrates robust recognition capabilities across varied imaging conditions encompassing both white light and monochromatic light. This stands poised to serve as a potent data-driven tool enhancing the characterizing efficiency and holds the potential to expedite research initiatives and applications founded on the utilization of 2D materials.