Selective inhibitors targeting Fis1/Mid51 protein-protein interactions protect against hypoxia-induced damage in cardiomyocytes

Front Pharmacol. 2023 Dec 21:14:1275370. doi: 10.3389/fphar.2023.1275370. eCollection 2023.

Abstract

Cardiovascular diseases (CVDs) are the most common non-communicable diseases globally. An estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Mitochondria play critical roles in cellular metabolic homeostasis, cell survival, and cell death, as well as producing most of the cell's energy. Protein-protein interactions (PPIs) have a significant role in physiological and pathological processes, and aberrant PPIs are associated with various diseases, therefore they are potential drug targets for a broad range of therapeutic areas. Due to their ability to mimic natural interaction motifs and cover relatively larger interaction region, peptides are very promising as PPI inhibitors. To expedite drug discovery, computational approaches are widely used for screening potential lead compounds. Here, we developed peptides that inhibit mitochondrial fission 1 (Fis1)/mitochondrial dynamics 51 kDa (Mid51) PPI to reduce the cellular damage that can lead to various human pathologies, such as CVDs. Based on a rational design approach we developed peptide inhibitors of the Fis1/Mid51 PPI. In silico and in vitro studies were done to evaluate the biological activity and molecular interactions of the peptides. Two peptides, CVP-241 and CVP-242 were identified based on low binding energy and molecular dynamics simulations. These peptides inhibit Fis1/Mid51 PPI (-1324.9 kcal mol-1) in docking calculations (CVP-241, -741.3 kcal mol-1, and CVP-242, -747.4 kcal mol-1), as well as in vitro experimental studies Fis1/Mid51 PPI (KD 0.054 µM) Fis1/Mid51 PPI + CVP-241 (KD 3.43 µM), and Fis1/Mid51 PPI + CVP-242 (KD 44.58 µM). Finally, these peptides have no toxicity to H9c2 cells, and they increase cell viability in cardiomyocytes (H9c2 cells). Consequently, the identified inhibitor peptides could serve as potent molecules in basic research and as leads for therapeutic development.

Keywords: cardiovascular diseases (CVDs); inhibitor; mitochondrial dynamics 51 kDa (Mid51); mitochondrial fission 1 (Fis1); peptide; protein-protein interaction (PPI).

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the Israel Science Foundation (ISF), research grant no. 935/20 to NQ.