Highly efficient and stable Cs3Mn0.93Zn0.07Br5@SiO2 for wide color gamut backlight displays

Dalton Trans. 2024 Jan 30;53(5):2153-2158. doi: 10.1039/d3dt03874b.

Abstract

Mn-based perovskites have become a new candidate material for backlight display applications. However, low efficiency and poor stability are the key problems limiting the application of Mn-based perovskites. In this work, Zn-doped and SiO2-encapsulated Cs3MnBr5, denoted as Cs3Mn0.93Zn0.07Br5@SiO2 (CMZBS), was successfully synthesized to improve the photoluminescence quantum yield (PLQY) and stability. After Zn doping, the PLQY increased from 51% to 72% due to the reduction in the energy transfer between [MnBr4]2-. The PLQY can be further improved to 80% after coating SiO2. Compared with Cs3MnBr5 (CMB), CMZBS showed better stability against thermal, air, light, and polar solvents (ethanol and isopropanol). In addition, a white LED (WLED) device with a CIE of (0.323, 0.325) was fabricated by integrating CMZBS and the red phosphor K2SiF6:Mn4+ on a 465 nm blue GaN chip, which exhibited a high luminous efficiency of 92 lm W-1 and excellent stability, demonstrating its great potential application in wide color gamut displays.