Students Satisfaction with the Use of PlayDoh® as a Tool to Actively Learn 3D Veterinary Anatomy More Accurately

Med Sci Educ. 2023 Oct 2;33(6):1371-1378. doi: 10.1007/s40670-023-01892-y. eCollection 2023 Dec.

Abstract

Understanding veterinary anatomy is an essential skill for the study of veterinary medicine as well as for diagnostic imaging and therapy. Dissection facilities are increasingly limited in some schools and its alternatives have often focussed on using two-dimensional images. However, the study of veterinary anatomy is mainly concerned with identifying structures and spatial relationships between them within a 3D space, and the use of 2D teaching approaches does not provide accurate information. We tested whether PlayDoh® student-built models could be an inexpensive potential tool beneficial to veterinary students learning anatomy in three distinct scenarios: (1) during a lecture, introducing a new concept; (2) during a flipped classroom approach where a video-podcast lecture was to be watched by the students prior to the lecture and (3) as a revision session where students brought their own questions and created, under supervision, their own models to respond to them. PlayDoh® sessions benefitted 172 first-year Veterinary Medicine and Animal Science students. The most accurate visualisation of anatomical structures in 3D was the principal benefit mentioned by the learners (35%). In addition, the learners noted that the technique would help with 'retention' (18%). According to the students' preferences, it was possible to create four groups: A, B, C and D. Group A encompassed the methodologies most liked by students and consisted of lectures, dissection and demonstrations. Group B included demonstrations and 3D modelling using PlayDoh®. Group C consisted of 3D modelling using PlayDoh®, books and online and, finally, group D included the methodologies least preferred by students, i.e. online and PBL. Our findings suggest that using 3D PlayDoh® modelling has potential as a method to enhance the learning of veterinary anatomy and may be most valuable to those students learning more complex subject areas that require a 3D teaching approach in practice.

Supplementary information: The online version contains supplementary material available at 10.1007/s40670-023-01892-y.

Keywords: 3D modelling; 3D topographical veterinary anatomy; 3D veterinary anatomy; Active anatomy learning; Innovative teaching; Playdoh®.