Multi-scale effects of habitat loss and the role of trait evolution

Ecol Evol. 2024 Jan 4;14(1):e10799. doi: 10.1002/ece3.10799. eCollection 2024 Jan.

Abstract

Habitat loss (HL) is a major cause of species extinctions. Although the effects of HL beyond the directly impacted area have been previously observed, they have not been modelled explicitly, especially in an eco-evolutionary context. To start filling this gap, we study a two-patch deterministic consumer-resource model, with one of the patches experiencing loss of resources as a special case of HL. Our model allows foraging and mating within a patch as well as between patches. We then introduce heritable variation in consumer traits related to resource utilization and patch use to investigate eco-evolutionary dynamics and compare results with constant and no trait variation scenarios. Our results show that HL in one patch can indeed reduce consumer densities in the neighbouring patch but can also increase consumer densities in the neighbouring patch when the resources are overexploited. Yet at the landscape scale, the effect of HL on consumer densities is consistently negative. Patch isolation increases consumer density in the patch experiencing HL but has generally negative effects on the neighbouring patch, with context-dependent results at the landscape scale. With high cross-patch dependence and coupled foraging and mating preferences, local HL can sometimes even lead to landscape-level consumer extinction. Eco-evolutionary dynamics can rescue consumers from such extinction in some cases if their death rates are sufficiently small. More generally, trait evolution had positive or negative effects on equilibrium consumer densities after HL, depending on the evolving trait and the spatial scale considered. In summary, our findings show that HL at a local scale can affect the neighbouring patch and the landscape as a whole, where heritable trait variation can, in some cases, alleviate the impact of HL. We thus suggest joint consideration of multiple spatial scales and trait variation when assessing and predicting the impacts of HL.

Keywords: consumer‐resource systems; eco‐evolutionary dynamics; habitat loss; overexploitation; spatial scales; two‐patch model.