Elucidating the redox activity of cobalt-1,2,3,4-cyclopentane-tetracarboxylic acid and 1,2,4,5-benzene-tetracarboxylic acid-based metal-organic frameworks for a hybrid supercapacitor

RSC Adv. 2024 Jan 5;14(3):1655-1664. doi: 10.1039/d3ra05820d. eCollection 2024 Jan 3.

Abstract

The development of electrode materials with extraordinary energy densities or high power densities has experienced a spectacular upsurge because of significant advances in energy storage technology. In recent years, the family of metal-organic frameworks (MOFs) has become an essential contender for electrode materials. Herein, two cobalt-based MOFs are synthesized with distinct linkers named 1,2,4,5-benzene-tetra-carboxylic acid (BTCA) and 1,2,3,4-cyclopentane-tetracarboxylic acid (CPTC). Investigations have been rigorously conducted to fully understand the effect of linkers on the electrochemical properties of Co-based MOFs. The best sample among the MOFs was used with activated carbon to create a battery-supercapacitor hybrid device. Due to its noteworthy results, specific capacity (100.3 C g-1), energy density (23 W h kg-1), power density (3400 W kg-1) and with the lowest ESR value of 0.4 Ω as well as its 95.4% capacity retention, the fabricated hybrid device was discovered to be very appealing for applications demanding energy storage. An approach for evaluating battery-supercapacitors was employed by quantifying the capacitive and diffusive contributions using Dunn's model to reflect the bulk and surface processes occurring during charge storage. This study fills the gap between supercapacitors and batteries, as well as providing a roadmap for creating a new generation of energy storage technologies with improved features.