Long-read transcriptome landscapes of primary and metastatic liver cancers at transcript resolution

Biomark Res. 2024 Jan 8;12(1):4. doi: 10.1186/s40364-023-00554-w.

Abstract

Background: The liver ranks as the sixth most prevalent site of primary cancer in humans, and it frequently experiences metastases from cancers originating in other organs. To facilitate the development of effective treatments and improve survival rates, it is crucial to comprehend the intricate and diverse transcriptome landscape of primary and metastatic liver cancers.

Methods: We conducted long-read isoform sequencing and short-read RNA sequencing using a cohort of 95 patients with primary and secondary liver cancer who underwent hepatic resection. We compared the transcriptome landscapes of primary and metastatic liver cancers and systematically investigated hepatocellular carcinoma (HCC), paired primary tumours and liver metastases, and matched nontumour liver tissues.

Results: We elucidated the full-length isoform-level transcriptome of primary and metastatic liver cancers in humans. Our analysis revealed isoform-level diversity in HCC and identified transcriptome variations associated with liver metastatis. Specific RNA transcripts and isoform switching events with clinical implications were profound in liver cancer. Moreover, we defined metastasis-specific transcripts that may serve as predictors of risk of metastasis. Additionally, we observed abnormalities in adjacent paracancerous liver tissues and characterized the immunological and metabolic alterations occurring in the liver.

Conclusions: Our findings underscore the power of full-length transcriptome profiling in providing novel biological insights into the molecular mechanisms underlying tumourigenesis. These insights will further contribute to improving treatment strategies for primary and metastatic liver cancers.

Keywords: Immunosuppressive environment; Isoform switch; Metastasis-specific transcript; Specific RNA transcript; Third-generation sequencing technology.