A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design

Cell. 2024 Jan 18;187(2):345-359.e16. doi: 10.1016/j.cell.2023.12.007. Epub 2024 Jan 4.

Abstract

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.

Keywords: AM/FM single-cell reporters; digital signal processing; protein condensates; protein oscillations; reaction-diffusion systems; spatiotemporal signaling circuits; synthetic biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Proteins*
  • Eukaryotic Cells* / metabolism
  • Mammals
  • Signal Transduction*
  • Synthetic Biology / methods

Substances

  • Bacterial Proteins