Scalar Relativistic Effects with Multiwavelets: Implementation and Benchmark

J Chem Theory Comput. 2024 Jan 23;20(2):728-737. doi: 10.1021/acs.jctc.3c01095. Epub 2024 Jan 5.

Abstract

The importance of relativistic effects in quantum chemistry is widely recognized, not only for heavier elements but throughout the periodic table. At the same time, relativistic effects are strongest in the nuclear region, where the description of electrons through a linear combination of atomic orbitals becomes more challenging. Furthermore, the choice of basis sets for heavier elements is limited compared with lighter elements where precise basis sets are available. Thanks to the framework of multiresolution analysis, multiwavelets provide an appealing alternative to overcoming this challenge: they lead to robust error control and adaptive algorithms that automatically refine the basis set description until the desired precision is reached. This allows one to achieve a proper description of the nuclear region. In this work, we extended the multiwavelet-based code MRChem to the scalar zero-order regular approximation framework. We validated our implementation by comparing the total energies for a small set of elements and molecules. To confirm the validity of our implementation, we compared both against a radial numerical code for atoms and the plane-wave-based code EXCITING.