Highly Efficient Storage of 25-Dimensional Photonic Qudit in a Cold-Atom-Based Quantum Memory

Phys Rev Lett. 2023 Dec 15;131(24):240801. doi: 10.1103/PhysRevLett.131.240801.

Abstract

Building an efficient quantum memory in high-dimensional Hilbert spaces is one of the fundamental requirements for establishing high-dimensional quantum repeaters, where it offers many advantages over two-dimensional quantum systems, such as a larger information capacity and enhanced noise resilience. To date, it remains a challenge to develop an efficient high-dimensional quantum memory. Here, we experimentally realize a quantum memory that is operational in Hilbert spaces of up to 25 dimensions with a storage efficiency of close to 60% and a fidelity of 84.2±0.6%. The proposed approach exploits the spatial-mode-independent interaction between atoms and photons which are encoded in transverse-size-invariant vortex modes. In particular, our memory features uniform storage efficiency and low crosstalk disturbance for 25 individual spatial modes of photons, thus allowing the storing of qudit states programmed from 25 eigenstates within the high-dimensional Hilbert spaces. These results have great prospects for the implementation of long-distance high-dimensional quantum networks and quantum information processing.