Physical-layer key distribution based on commonly-driven laser synchronization with random modulation of drive light

Opt Express. 2023 Dec 18;31(26):42838-42849. doi: 10.1364/OE.506211.

Abstract

We propose and experimentally demonstrate a physical-layer key distribution scheme using commonly-driven laser synchronization with random modulation of drive light. Two parameter-matched semiconductor lasers injected by a common complex drive light are used as entropy sources for legitimate users. Legitimate users generate their own random signal by randomly time-division multiplexing of two random sequences with a certain duration according to individual control codes, and then independently modulate the drive light. Laser synchronization is achieved during time slots when the modulation sequences of two users are identical, and thus provide highly correlated randomness for extracting random numbers as shared keys. Experimental results show that the random modulation of the drive light reduces the correlation between the drive light and laser outputs. In addition, laser synchronization is sensitive to the modulation delay and then the latter can be used as an additional hardware parameter. These mean that security is enhanced. In addition, the proposed method has a short laser synchronization recovery time of lower than 1.1 ns, meaning a high rate of key distribution. The upper limit of final key rate of 2.55 Gb/s with a criterion of bit error rate of 1.68 × 10-3 is achieved in experiments. Our results provide a promising candidate for protecting the security of optical fiber communication.