Baicalin ameliorates insulin resistance and regulates hepatic glucose metabolism via activating insulin signaling pathway in obese pre-diabetic mice

Phytomedicine. 2024 Feb:124:155296. doi: 10.1016/j.phymed.2023.155296. Epub 2023 Dec 17.

Abstract

Background: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin.

Purpose: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms.

Methods: Insulin-resistant (IR)-HepG2 cells were stimulated by dexamethasone (20 µM) and high glucose (50 mM) for 48 h and incubated with or without baicalin or metformin for another 16 h. Male C57BL/6 J mice were fed with a high-fat diet (HFD, 60 % kcal% fat) during the total 14 weeks. Obese mice were then administered with baicalin (50 and 100 mg/kg) or vehicle solution everyday through oral gavage during the last 4-week period. Moreover, baicalin metabolisms in vitro and in vivo were determined using UPLC/MS/MS to study its metabolism situation.

Results: Exposure to dexamethasone and high glucose damaged the abilities of glycogen synthesis and glucose uptake with elevated oxidative stress and increased generation levels of advanced glycation end-products (AGEs) in HepG2 cells. These impairments were basically reversed by baicalin treatment. Four-week oral administration with baicalin ameliorated hyperglycemia and dyslipidemia in HFD-induced obese and pre-diabetic mice. Downregulation of IRS/PI3K/Akt signaling pathway accomplished with reduced GLUT4 expression and enhanced GSK-3β activity was observed in insulin resistant HepG2 cells as well as liver tissues from pre-diabetic mice; and such effect was prevented by baicalin. Moreover, baicalin and its matabolites were detected in IR-HepG2 cells and mouse plasma.

Conclusion: The study illustrated that baicalin alleviated insulin resistance by activating insulin signaling pathways and inhibiting oxidative stress and AGEs production, revealing the potential of baicalin to be a therapeutic natural flavonoid against hepatic insulin and glucose-lipid metabolic disturbance in pre-diabetes accompanied with obesity.

Keywords: Baicalin; Diabetes mellitus; Glucose metabolism; Insulin resistance; Obesity.

MeSH terms

  • Animals
  • Dexamethasone / pharmacology
  • Diabetes Mellitus, Experimental* / drug therapy
  • Diabetes Mellitus, Experimental* / metabolism
  • Diet, High-Fat / adverse effects
  • Flavonoids / therapeutic use
  • Glucose / metabolism
  • Glycogen Synthase Kinase 3 beta / metabolism
  • Insulin / metabolism
  • Insulin Resistance*
  • Liver
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Obesity / drug therapy
  • Obesity / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Prediabetic State* / drug therapy
  • Signal Transduction
  • Tandem Mass Spectrometry

Substances

  • Glucose
  • Insulin
  • baicalin
  • Phosphatidylinositol 3-Kinases
  • Glycogen Synthase Kinase 3 beta
  • Flavonoids
  • Dexamethasone