Mild Stereoselective Synthesis of Densely Substituted [3]Dendralenes via Ru-Catalyzed Intermolecular Dimerization of 1,1-Disubstituted Allenes

J Am Chem Soc. 2024 Jan 17;146(2):1532-1542. doi: 10.1021/jacs.3c11448. Epub 2024 Jan 4.

Abstract

Described here is a mild and stereoselective protocol for the synthesis of [3]dendralenes via the intermolecular dimerization of allenes. With the proper choice of a ruthenium catalyst, a range of unactivated 1,1-disubstituted allenes, without prefunctionalization in the allylic position, reacted efficiently to provide rapid access to densely substituted [3]dendralenes. An intermolecular C-C bond and three different types of C═C double bonds (di-, tri-, and tetrasubstituted) embedded in an acyclic structure were constructed with good to high E/Z stereocontrol. This is in contrast to the known catalytic protocols that focus on allenes with prefunctionalization at the allylic position and/or monosubstituted allenes, which would proceed by a different mechanism or require less stereocontrol. The silyl-substituted dendralene products are precursors of other useful dendralene molecules. Density functional theory (DFT) studies and control experiments supported a mechanism involving oxidative cyclometalation, β-H elimination (the rate-determining step), and reductive elimination.