Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization

Nat Commun. 2024 Jan 3;15(1):229. doi: 10.1038/s41467-023-44363-z.

Abstract

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.

MeSH terms

  • Algorithms
  • Animals
  • Brain Mapping* / methods
  • Brain* / diagnostic imaging
  • Brain* / physiology
  • Humans
  • Magnetic Resonance Imaging / methods
  • Mice
  • Neurons