Silicon and arbuscular mycorrhizal fungi alleviate chromium toxicity in Brassica rapa by regulating Cr uptake, antioxidant defense expression, the glyoxalase system, and secondary metabolites

Plant Physiol Biochem. 2024 Jan:206:108286. doi: 10.1016/j.plaphy.2023.108286. Epub 2023 Dec 24.

Abstract

The potential contribution of silicon (Si) (300 mg kg-1 potash silica) or arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis) to reduce chromium toxicity (Cr; 0 and 300 mg kg-1) in Brassica rapa was examined in this work. Under Cr stress, Si and AMF were used separately and in combination (no Si, or AMF, Si, AMF, and Si + AMF). Brassica rapa growth, colonization, photosynthesis, and physio-biochemical characteristics decreased under Cr stress. Oxidative stress was a side effect of Cr stress and was associated with high levels of methylglyoxal (MG), hydrogen peroxide (H2O2), lipid peroxidation (MDA), and maximum lipoxygenase activity (LOX). On the other hand, quantitative real-time PCR analyses of gene expression showed that under Cr stress, the expression of genes for secondary metabolites and antioxidant enzymes was higher than that under the control. The co-application of Si and AMF activated the plant defense system by improving the antioxidative enzymes activities, the potassium citrate and glutathione pool, the glyoxalase system, metabolites, and genes encoding these enzymes under Cr stress. Under the influence of Cr stress, oxidative stress was reduced by the coordinated control of the antioxidant and glyoxalase systems. However, the restricted Cr uptake and root and shoot accumulation of Si and AMF co-applied to only Cr-stressed plants was more significant. In summary, Si and AMF applied together successfully counteract the deleterious effects of Cr stress and restore growth and physio-biochemical characteristics. As a result, the beneficial effects of the combined Si and AMF application may be attributed to mycorrhizae-mediated enhanced Si absorption and metal resistance.

Keywords: Ascorbate-glutathione cycle; Chromium stress; Defense genes; Plant growth; Rhizophagus irregularis; Silicon.

MeSH terms

  • Antioxidants / metabolism
  • Brassica rapa* / metabolism
  • Chromium / toxicity
  • Hydrogen Peroxide / metabolism
  • Mycorrhizae* / physiology
  • Plant Roots / metabolism
  • Plants / metabolism
  • Silicon / metabolism
  • Silicon / pharmacology

Substances

  • Antioxidants
  • Silicon
  • Chromium
  • Hydrogen Peroxide