Peripheral blood mononuclear cell transcriptome profile in a clinical trial with subcutaneous, grass pollen allergoid immunotherapy

Clin Exp Allergy. 2024 Feb;54(2):130-142. doi: 10.1111/cea.14432. Epub 2024 Jan 2.

Abstract

Introduction: Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment in allergic airway diseases. Underlying immunological mechanisms and candidate biomarkers, which may be translated into predictive/surrogate measures of clinical efficacy, remain an active area of research. The aim of this study was to evaluate Pollinex Quattro (PQ) Grass AIT induced immunomodulatory mechanisms, based on transcriptome profiling of peripheral blood mononuclear cells.

Methods: 119 subjects with grass pollen induced seasonal allergic rhinitis (SAR) were randomized in a 2:2:1:1 ratio to receive a cumulative dose of PQ Grass as a conventional or extended pre-seasonal regimen, placebo, or placebo with MicroCrystalline Tyrosine. Gene expression analysis was an exploratory endpoint evaluated in a subgroup of 30 subjects randomly selected from the four treatment arms. Samples were collected at three time points: screening (baseline), before the start of the grass pollen season and at the end of the season. This study was funded by the manufacturer of PQ.

Results: Transcriptome analysis demonstrated that the most significant changes in gene expression, for both treatment regimens, were at the end of the grass pollen season, with the main Th1 candidate molecules (IL-12A, IFNγ) upregulated and Th2 signature cytokines downregulated (IL-4, IL-13, IL-9) (p < .05). Canonical pathways analysis demonstrated Th1, Th2, Th17 and IL-17 as the most significantly enriched pathways based on absolute value of activation z-score (IzI score ≥ 2, p < .05). Upstream regulator analysis showed pronounced inhibition of pro-inflammatory allergic molecules IgE, IL-17A, IL-17F, IL-25 (IL-17E) (IzI score ≥ 2, FDR < 0.05) and activation of pro-tolerogenic molecules IL-12A, IL-27, IL-35 (EBI3) at the end of the grass pollen season.

Conclusion: Peripheral blood mononuclear cells transcriptome profile showed an inhibition of Th2, Th17 pro-inflammatory allergic responses and immune deviation towards Th1 responses. PQ Grass extended regimen exhibited a superior mechanistic efficacy profile in comparison with PQ conventional regimen.

Keywords: AIT; PQ Grass; biomarker; efficacy; transcriptome.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allergens*
  • Allergoids
  • Desensitization, Immunologic
  • Humans
  • Leukocytes, Mononuclear
  • Poaceae / genetics
  • Pollen
  • Transcriptome*

Substances

  • Allergoids
  • Allergens

Grants and funding