Electrosprayed hierarchical mesoporous Mn0.5Ti2(PO4)3@C microspheres as promising High-Performance anode for Potassium-Ion batteries

J Colloid Interface Sci. 2024 Mar 15:658:923-933. doi: 10.1016/j.jcis.2023.12.122. Epub 2023 Dec 23.

Abstract

NASICON-structured Ti-based polyanion compounds benefit from a stable structural framework, large ion channels, and fast ion mobility. However, the large radius of potassium and its poor electronic conductivity restrict its use in potassium-ion batteries. Herein, hierarchical mesoporous Mn0.5Ti2(PO4)3@C microspheres have been successfully synthesized using a simple electrospraying method. These microspheres consist of Mn0.5Ti2(PO4)3 nanoparticles evenly embedded in three-dimensional mesoporous carbon microspheres. The hierarchical mesoporous micro/nanostructure facilitates the rapid insertion and extraction of K+, while the three-dimensional carbon microspheres matrix enhances electrical conductivity and prevents active materials from collapsing during cycling. So the hierarchical mesoporous Mn0.5Ti2(PO4)3@C microspheres exhibit a high reversible discharge specific capacity (306 mA h g-1 at 20 mA g-1), a notable rate capability (123 mA h g-1 at 5000 mA g-1), and exceptional cycle performance (148 mA h g-1 at 500 mA g-1 after 1000 cycles). The results show that electrosprayed Mn0.5Ti2(PO4)3@C microspheres are a promising anode for PIBs.

Keywords: Electrospraying; Hierarchical mesoporous microspheres; High specific capacity; Pseudocapacitance; Specific surface area.