Chiral anomaly and Weyl orbit in three-dimensional Dirac semimetal Cd3As2grown on Si

Nanotechnology. 2024 Feb 1;35(16). doi: 10.1088/1361-6528/ad1941.

Abstract

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2films grown on Si showing the chiral anomaly. Here,for the first time, we report the novel preparation and fabrication technique of a Cd3As2(112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry's phase ofπ. Despite the Hall carrier density (n3D≈9.42×1017cm-3) of our Cd3As2film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2film. Our tailoring growth of Cd3As2on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

Keywords: Cd3As2; Si CMOS; chiral anomaly; weak antilocalization.