Solar-blind ultraviolet photodetector based on Nb2C/ β-Ga2O3heterojunction

Nanotechnology. 2024 Jan 30;35(16). doi: 10.1088/1361-6528/ad18e7.

Abstract

β-Ga2O3has been widely investigated for its stability and thermochemical properties. However, the preparation ofβ-Ga2O3thin films requires complex growth techniques and high growth temperatures, and this has hindered the application ofβ-Ga2O3thin films. In this study,β-Ga2O3thin films with good crystalline quality were prepared using a green method, and an ultraviolet (UV) detector based onβ-Ga2O3with a photocurrent of 2.54 × 10-6A and a dark current of 1.19 × 10-8A has been developed. Two-dimensional materials have become premium materials for applications in optoelectronic devices due to their high conductivity. Here, we use the suitable energy band structure between Nb2C and Ga2O3to create a high carrier migration barrier, which reduces the dark current of the device by an order of magnitude. In addition, the device exhibits solar-blind detection, high responsiveness (28 A W-1) and good stability. Thus, the Nb2C/β-Ga2O3heterojunction is expected to be one of the promising devices in the field of UV photoelectric detection.

Keywords: MXene; heterojunction; solar-blind.