Preparation of surface plasmon resonance-based nanosensor for curcumin detection

Turk J Chem. 2021 Sep 21;46(1):14-26. doi: 10.3906/kim-2106-21. eCollection 2022.

Abstract

In this study, the curcumin imprinted and the non-imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan) (poly(HEMA-MATrp)) nanoparticle based surface plasmon resonance (SPR) nanosensors were prepared for the detection of curcumin and characterized by zeta-size analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. After, the curcumin imprinted and the non-imprinted nanoparticles are attached on the surface of SPR chips. The curcumin imprinted and the non-imprinted SPR nanosensors are characterized by using atomic force microscope, ellipsometer, and contact angle measurements. Kinetic studies were carried out with curcumin aqueous solution at a concentration range of 0.01-150 mg/L using the curcumin imprinted and the non-imprinted SPR nanosensors. In all kinetic analysis, the response time is 14 min for equilibration, adsorption, and desorption cycles. The limit of detection and limit of quantification for the curcumin imprinted SPR nanosensors was 0.0012 mg/L and 0.0040 mg/L, respectively. The validity of the curcumin imprinted SPR nanosensors in real samples was carried out using liquid chromatography-tandem mass spectrometry (LC-MS).

Keywords: Curcumin; molecularly imprinting; nanosensor; surface plasmon resonance.

Grants and funding

The study was funded by a grant from Hacettepe University Scientific Research Projects Coordination Unit (Project Number: FDK-2019-17775).