PdMo nanoflowers for endogenous/exogenous-stimulated nanocatalytic therapy

Front Pharmacol. 2023 Dec 7:14:1324764. doi: 10.3389/fphar.2023.1324764. eCollection 2023.

Abstract

The clinical application of reactive oxygen species (ROS)-mediated tumor treatment has been critically limited by inefficient ROS generation. Herein, we rationally synthesized and constructed the three-dimensional PdMo nanoflowers through a one-pot solvothermal reduction method for elaborately regulated peroxidase-like enzymatic activity and glutathione peroxidase-like enzymatic activity, to promote oxidation ROS evolvement and antioxidation glutathione depletion for achieving intensive ROS-mediated tumor therapy. The three-dimensional superstructure composed of two-dimensional nanosheet subunits can solve the issues by avoiding the appearance of tightly stacked crystalline nanostructures. Significantly, Mo is chosen as a second metal to alloy with Pd because of its more chemical valence and negative ionization energy than Pd for improved electron transfer efficiencies and enhanced enzyme-like activities. In addition, the photothermal effect generated by PdMo nanoflowers could also enhance its enzymatic activities. Thus, this work provides a promising paradigm for achieving highly ROS-mediated tumor therapeutic efficacy by regulating the multi-enzymatic activities of Pd-based nanoalloys.

Keywords: GSH; PdMo nanoflowers; ROS; peroxidase-like activity; tumor therapy.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the National Natural Science Foundation (Grant No. 82260580), the Key R&D Program of Scientific Research and Technology Development Project of Guangxi (Grant No. 2022AB11046), the Key R&D Program of Scientific Research and Technology Development Project of Nanning, Guangxi (Grant No. ZC20213009), the Key R&D Program of Scientific Research and Technical Development Project of Qingxiu District, Nanning, Guangxi (Grant No. 2021015), the Youth Science Foundation of Guangxi Medical University (No. GXMUYSF 202318) and Guangxi Medical and health key discipline construction project.