Biomimetic crimped/aligned microstructure to optimize the mechanics of fibrous hybrid materials for compliant vascular grafts

J Mech Behav Biomed Mater. 2024 Feb:150:106301. doi: 10.1016/j.jmbbm.2023.106301. Epub 2023 Dec 12.

Abstract

The precise mechanical properties of many tissues are highly dependent on both the composition and arrangement of the nanofibrous extracellular matrix. It is well established that collagen nanofibers exhibit a crimped microstructure in several tissues such as blood vessel, tendon, and heart valve. This collagen fiber arrangement results in the classic non-linear 'J-shaped' stress strain curve characteristic of these tissues. Synthetic biomimetic fibrous materials with a crimped microstructure similar to natural collagen demonstrate similar mechanical properties to natural tissues. The following work describes a nanofabrication method based on electrospinning used to fabricate two component hybrid electrospun fibrous materials that mimic the microstructure and mechanical properties of vascular tissue. The properties of these samples can be precisely and predictably optimized by modifying fabrication parameters. Tubular grafts with biomimetic microstructure were constructed to demonstrate the potential of this fabrication method in vascular graft replacement applications. It was possible to closely match both the overall geometry and the compliance of specific blood vessels by optimizing graft microstructure.

MeSH terms

  • Biomimetic Materials* / chemistry
  • Biomimetics
  • Bioprosthesis*
  • Blood Vessel Prosthesis
  • Collagen
  • Nanofibers* / chemistry
  • Tissue Engineering / methods
  • Tissue Scaffolds / chemistry
  • Vascular Grafting*

Substances

  • Collagen